资源类型

期刊论文 423

年份

2023 52

2022 45

2021 38

2020 33

2019 26

2018 32

2017 20

2016 13

2015 23

2014 17

2013 33

2012 10

2011 13

2010 8

2009 17

2008 6

2007 14

2006 1

2005 2

2004 2

展开 ︾

关键词

固体氧化物燃料电池 8

二氧化碳 3

氧化石墨烯 3

SOFC 2

动力学 2

固体氧化物电解池 2

带传动 2

显微硬度 2

有色金属工业 2

氧化铈 2

混合基质膜 2

电解质 2

碳基燃料 2

膜分离 2

重金属 2

重金属废水 2

2035 1

Al@AP/PVDF纳米复合材料 1

CCS 1

展开 ︾

检索范围:

排序: 展示方式:

Translocation and biotoxicity of metal (oxide) nanoparticles in the wetland-plant system

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1432-4

摘要:

• Aquatic plants are more likely to absorb TiO2 NPs that are beneficial to them.

关键词: Constructed wetlands     Aquatic plants     Nanoparticles     Physiological activity     Biomass    

Influence of surface modified mixed metal oxide nanoparticles on the electrochemical and mechanical properties

《化学科学与工程前沿(英文)》 2023年 第17卷 第1期   页码 1-14 doi: 10.1007/s11705-022-2176-9

摘要: Newly synthesized functional nanoparticles, 3-amino-1,2,4-triazole (ATA)/SiO2–TiO2 were introduced to the polyurethane (PU) matrix. Electrochemical techniques were used to investigate the barrier properties of the synthesized PU–ATA/SiO2–TiO2 nanocomposite coated steel specimen. In natural seawater, electrochemical impedance spectroscopy experiments indicated outstanding protective behaviour for the PU–ATA/SiO2–TiO2 coated steel. The coating resistance (Rcoat) of PU–ATA/SiO2–TiO2 was determined to be 2956.90 kΩ·cm–2. The Rcoat of the PU–ATA/SiO2–TiO2 nanocomposite coating was found to be over 50% higher than the PU coating. The current measured along the scratched surface of the PU–ATA/SiO2–TiO2 coating was found to be very low (1.65 nA). The enhanced ATA/SiO2–TiO2 nanoparticles inhibited the entry of electrolytes into the coating interface, as revealed by scanning electron microscopy/energy dispersive X-ray spectroscopy and X-ray diffraction analysis of the degradation products. Water contact angle testing validated the hydrophobic nature of the PU–ATA/SiO2–TiO2 coating (θ = 115.4°). When the concentration of ATA/SiO2−TiO2 nanoparticles was 2 wt %, dynamic mechanical analysis revealed better mechanical properties. Therefore, the newly synthesised PU–ATA/SiO2–TiO2 nanocomposite provided excellent barrier and mechanical properties due to the addition of ATA/SiO2–TiO2 nanoparticles to the polyurethane, which inhibited material degradation and aided in the prolongation of the coated steel’s life.

关键词: SiO2/TiO2 nanoparticle     nanocomposite coatings     dynamic mechanical analysis     electrochemical techniques     corrosion     colloids and interfaces    

Recent advances in gold-metal oxide core-shell nanoparticles: Synthesis, characterization, and their

Michelle Lukosi,Huiyuan Zhu,Sheng Dai

《化学科学与工程前沿(英文)》 2016年 第10卷 第1期   页码 39-56 doi: 10.1007/s11705-015-1551-1

摘要: Heterogeneous catalysis with core-shell structures has been a large area of focus for many years. This paper reviews the most recent work and research in core-shell catalysts utilizing noble metals, specifically gold, as the core within a metal oxide shell. The advantage of the core-shell structure lies in its capacity to retain catalytic activity under thermal and mechanical stress, which is a pivotal consideration when synthesizing any catalyst. This framework is particularly useful for gold nanoparticles in protecting them from sintering so that they retain their size, structure, and most importantly their catalytic efficiency. The different methods of synthesizing such a structure have been compiled into three categories: seed-mediated growth, post selective oxidation treatment, and one-pot chemical synthesis. The selective oxidation of carbon monoxide and reduction of nitrogen containing compounds, such as nitrophenol and nitrostyrene, have been studied over the past few years to evaluate the functionality and stability of the core-shell catalysts. Different factors that could influence the catalyst’s performance are the size, structure, choice of metal oxide shell and noble metal core and thereby the interfacial synergy and lattice mismatch between the core and shell. In addition, the morphology of the shell also plays a critical role, including its porosity, density, and thickness. This review covers the synthesis and characterization of gold-metal oxide core-shell structures, as well as how they are utilized as catalysts for carbon monoxide (CO) oxidation and selective reduction of nitrogen-containing compounds.

关键词: core-shell     characterization     core-shell structure     Different     stability    

Nexus between polymer support and metal oxide nanoparticles in hybrid nanosorbent materials (HNMs) for

Ryan C. SMITH,Jinze LI,Surapol PADUNGTHON,Arup K. SENGUPTA

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 929-938 doi: 10.1007/s11783-015-0795-9

摘要: Metal oxide nanoparticles like hydrated ferric oxide (HFO) or hydrated zirconium oxide (HZrO) are excellent sorbents for environmentally significant ligands like phosphate, arsenic, or fluoride, present at trace concentrations. Since the sorption capacity is surface dependent for HFO and HZrO, nanoscale sizes offer significant enhancement in performance. However, due to their miniscule sizes, low attrition resistance, and poor durability they are unable to be used in typical plug-flow column setups. Meanwhile ion exchange resins, which have no specific affinity toward anionic ligands, are durable and chemically stable. By impregnating metal oxide nanoparticles inside a polymer support, with or without functional groups, a hybrid nanosorbent material (HNM) can be prepared. A HNM is durable, mechanically strong, and chemically stable. The functional groups of the polymeric support will affect the overall removal efficiency of the ligands exerted by the Donnan Membrane Effect. For example, the removal of arsenic by HFO or the removal of fluoride by HZrO is enhanced by using anion exchange resins. The HNM can be precisely tuned to remove one type of contaminant over another type. Also, the physical morphology of the support material, spherical bead versus ion exchange fiber, has a significant effect on kinetics of sorption and desorption. HNMs also possess dual sorption sites and are capable of removing multiple contaminants, namely, arsenate and perchlorate, concurrently.

关键词: ion exchange     sorption     arsenic     perchlorate     fluoride    

Preparation of rare-earth metal complex oxide catalysts for catalytic wet air oxidation

LI Ning, LI Guangming, YAO Zhenya, ZHAO Jianfu

《环境科学与工程前沿(英文)》 2007年 第1卷 第2期   页码 190-195 doi: 10.1007/s11783-007-0033-1

摘要: Catalytic wet air oxidation (CWAO) is one of the most promising technologies for pollution abatement. Developing catalysts with high activity and stability is crucial for the application of the CWAO process. The Mn/Ce complex oxide catalysts for CWAO of high concentration phenolcontaining wastewater were prepared by coprecipitation. The catalyst preparation conditions were optimized by using an orthogonal layout method and single-factor experimental analysis. The Mn/Ce serial catalysts were characterized by Brunauer Emmett Teller (BET) analysis and the metal cation leaching was measured by inductively coupled plasma torch-atomic emission spectrometry (ICP-AES). The results show that the catalysts have high catalytic activities even at a low temperature (80?C) and low oxygen partial pressure (0.5 MPa) in a batch reactor. The metallic ion leaching is comparatively low (Mn<6.577 mg/L and Ce<0.6910 mg/L, respectively) in the CWAO process. The phenol, COD, and TOC removal efficiencies in the solution exceed 98.5% using the optimal catalyst (named CSP). The new catalyst would have a promising application in CWAO treatment of high concentration organic wastewater.

关键词: torch-atomic emission     Brunauer     Catalytic     process     stability    

Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles

Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha

《环境科学与工程前沿(英文)》 2020年 第14卷 第1期 doi: 10.1007/s11783-019-1194-4

摘要: Eco-friendly IONPs were synthesized through solvothermal method. IONPs show very high removal efficiency for CeO2 NPs i.e. 688 mg/g. Removal was >90% in all synthetic and real water samples. >80% recovery of CeO2 NPs through sonication confirms reusability of IONPs. Increasing applications of metal oxide nanoparticles and their release in the natural environment is a serious concern due to their toxic nature. Therefore, it is essential to have eco-friendly solutions for the remediation of toxic metal oxides in an aqueous environment. In the present study, eco-friendly Iron Oxide Nanoparticles (IONPs) are synthesized using solvothermal technique and successfully characterized using scanning and transmission electron microscopy (SEM and TEM respectively) and powder X-Ray diffraction (PXRD). These IONPs were further utilized for the remediation of toxic metal oxide nanoparticle, i.e., CeO2. Sorption experiments were also performed in complex aqueous solutions and real water samples to check its applicability in the natural environment. Reusability study was performed to show cost-effectiveness. Results show that these 200 nm-sized spherical IONPs, as revealed by SEM and TEM analysis, were magnetite (Fe3O4) and contained short-range crystallinity as confirmed from XRD spectra. Sorption experiments show that the composite follows the pseudo-second-order kinetic model. Further R2>0.99 for Langmuir sorption isotherm suggests chemisorption as probable removal mechanism with monolayer sorption of CeO2 NPs on IONP. More than 80% recovery of adsorbed CeO2 NPs through ultrasonication and magnetic separation of reaction precipitate confirms reusability of IONPs. Obtained removal % of CeO2 in various synthetic and real water samples was>90% signifying that IONPs are candidate adsorbent for the removal and recovery of toxic metal oxide nanoparticles from contaminated environmental water samples.

关键词: Adsorption     toxic metal oxide remediation     eco-friendly IONP     Iron oxide     CeO2 removal    

Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental

Zhen MA, Bei ZHOU, Yu REN

《环境科学与工程前沿(英文)》 2013年 第7卷 第3期   页码 341-355 doi: 10.1007/s11783-012-0472-1

摘要: Mesoporous silicas such as MCM-41 and SBA-15 possess high surface areas, ordered nanopores, and excellent thermal stability, and have been often used as catalyst supports. Although mesoporous metal oxides have lower surface areas compared to mesoporous silicas, they generally have more diversified functionalities. Mesoporous metal oxides can be synthesized via a soft-templating or hard-templating approach, and these materials have recently found some applications in environmental catalysis, such as CO oxidation, N O decomposition, and elimination of organic pollutants. In this review, we summarize the synthesis of mesoporous transition metal oxides using mesoporous silicas as hard templates, highlight the application of these materials in environmental catalysis, and furnish some prospects for future development.

关键词: mesoporous materials     silica     metal oxide     hard-templating     environmental catalysis    

Application of metal oxides-based nanofluids in PV/T systems: a review

《能源前沿(英文)》 2022年 第16卷 第3期   页码 397-428 doi: 10.1007/s11708-021-0758-8

摘要: Having the wide application of metal oxides in energy technologies, in recent years, many researchers tried to increase the performance of the PV/T system by using metal oxide-based nanofluids (NFs) as coolants or optical filters or both at the same time. This paper summarizes recent research activities on various metal oxides (Al2O3, TiO2, SiO2, Fe3O4, CuO, ZnO, MgO)-based NFs performance in the PV/T system regarding different significant parameters, e.g., thermal conductivity, volume fraction, mass flowrate, electrical, thermal and overall efficiency, etc. By conducting a comparative study among the metal oxide-based NFs, Al2O3/SiO2-water NFs are mostly used to achieve maximum performance. The Al2O3-water NF has a prominent heat transfer feature with a maximum electrical efficiency of 17%, and a maximum temperature reduction of PV module of up to 36.9°C can be achieved by using the Al2O3-water NF as a coolant. Additionally, studies suggest that the PV cell’s efficiency of up to 30% can be enhanced by using a solar tracking system. Besides, TiO2-water NFs have been proved to have the highest thermal efficiency of 86% in the PV/T system, but TiO2 nanoparticles could be hazardous for human health. As a spectral filter, SiO2-water NF at a size of 5 nm and a volume fraction of 2% seems to be very favorable for PV/T systems. Studies show that the combined use of NFs as coolants and spectral filters in the PV/T system could provide a higher overall efficiency at a cheaper rate. Finally, the opportunities and challenges of using NFs in PV/T systems are also discussed.

关键词: metal oxide     nanofluids (NFs)     nanoparticles (NPs)     optical filter     PV/T systems     solar energy    

Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: Role of supportand metal nanoparticle size on catalyst activity and products selectivity

Hasan Oliaei Torshizi, Ali Nakhaei Pour, Ali Mohammadi, Yahya Zamani, Seyed Mehdi Kamali Shahri

《化学科学与工程前沿(英文)》 2021年 第15卷 第2期   页码 299-309 doi: 10.1007/s11705-020-1925-x

摘要: In this paper, a series of cobalt catalysts supported on reduced graphene oxide (rGO) nanosheets with the loading of 5, 15 and 30 wt-% were provided by the impregnation method. The activity of the prepared catalysts is evaluated in the Fischer-Tropsch synthesis (FTS). The prepared catalysts were carefully characterized by nitrogen adsorption-desorption, hydrogen chemisorption, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, temperature programmed reduction, transmission electron microscopy, and field emission scanning electron microscopy techniques to confirm that cobalt particles were greatly dispersed on the rGO nanosheets. The results showed that with increasing the cobalt loading on the rGO support, the carbon defects are increased and as a consequence, the reduction of cobalt is decreased. The FTS activity results showed that the cobalt-time yield and turnover frequency passed from a maximum for catalyst with the Co average particle size of 15 nm due to the synergetic effect of cobalt reducibility and particle size. The products selectivity results indicated that the methane selectivity decreases, whereas the C selectivity raises with the increasing of the cobalt particle size, which can be explained by chain propagation in the primary chain growth reactions.

关键词: cobalt catalyst     cobalt particle size     Fischer-Tropsch synthesis     reduced graphene oxide     supported catalyst    

Signal promoting role of a p-type transition metal dichalcogenide used for the detection of ultra-trace

Abdolhamid Hatefi-Mehrjardi, Amirkhosro Beheshti-Marnani, Zarrin Es'haghi

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 823-831 doi: 10.1007/s11705-019-1797-0

摘要: A -type transition metal dichalcogenide (WS ) was synthesized and hybridized with graphene oxide via a simple hydrothermal method. The as-prepared material was used to modify a glassy carbon electrode for the fabrication of a simple, stable, and repeatable methylene blue-labeled “signal-off” aptasensor used for the sensitive determination of very low amounts of sodium diclofenac (DCF). The synthetic material, modification process, and role of WS in the current response enhancement were studied by X-ray diffraction, energy-dispersive X-ray spectroscopy, field emission scanning electron microscopy, high resolution transmission electron microscopy, Hall effect, cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. Subsequently, a wide linear range of DCF concentration (0.5–300 nmol/L), very low limit of detection (0.23 nmol/L), and good selectivity were obtained using the differential pulse voltammetry method with the assembled aptasensor. Finally, the fabricated aptasensor was successfully developed for physiological real samples with significant recoveries.

关键词: labeled aptasensor     transition metal dichalcogenide     graphene oxide     sodium diclofenac    

Micro-sized hydrothermal carbon supporting metal oxide nanoparticles as efficient catalyst for mono-dehydration

Cheng PAN, Chao FAN, Wanqin WANG, Teng LONG, Benhua HUANG, Donghua ZHANG, Peigen SU, Aqun ZHENG, Yang SUN

《能源前沿(英文)》 2022年 第16卷 第5期   页码 822-839 doi: 10.1007/s11708-020-0677-0

摘要: Most known catalytic dehydration of sugar alcohols such as D-sorbitol and D-mannitol can only produce di-dehydrated forms as major product, but mono-dehydrated products are also useful chemicals. Moreover, both di- and mono-dehydration demand a high temperature (150°C or higher), which deserves further attentions. To improve the mono-dehydration efficiency, a series of metal-containing hydrothermal carbonaceous materials (HTC) are prepared as catalyst in this work. Characterization reveals that the composition of preparative solution has a key influence on the morphology of HTC. In transformation of D-sorbitol, all HTC catalysts show low conversions in water regardless of temperature, but much better outputs are obtained in ethanol, especially at a higher temperature. When D-mannitol is selected as substrate, moderate to high conversions are obtained in both water and ethanol. On the other hand, high mono-dehydration selectivity is obtained for both sugar alcohols by using all catalysts. The origin of mono-dehydration selectivity and role of carbon component in catalysis are discussed in association with calculations. This study provides an efficient, mild, eco-friendly, and cost-effective system for mono-dehydration of sugar alcohols, which means a lot to development in new detergents or other fine chemicals.

关键词: hydrothermal carbon     morphology     catalyst     mono-dehydration     sugar alcohol    

金属支撑型固体氧化物燃料电池研究进展

周永川,宋世栋,韩敏芳

《中国工程科学》 2013年 第15卷 第2期   页码 27-32

摘要:

随着固体氧化物燃料电池(SOFC)向中低温发展,使得金属材料用于SOFC的关键组件成为可能。金属支撑型SOFC(MS-SOFC)是以金属或合金作为燃料电池支撑体的结构。相对于其他支撑型SOFC,MS-SOFC具有更好的导电能力和导热能力、较高的机械强度以及较低的成本,所以引起了研究人员的广泛关注。目前,MS-SOFC的结构呈多样化发展,支撑体、电极和电解质的材料及其制备工艺也不尽相同。本文介绍了不同结构的MS-SOFC的研究现状,评述了它们各自的制备工艺和存在的问题,并提出了目前MS-SOFC亟需解决的问题。

关键词: 固体氧化物燃料电池     金属支撑型SOFC     薄膜电解质     热循环     快速启动    

Brazing of ceramic-to-ceramic and ceramic-to-metal joints in air

Kirsten BOBZIN, Thomas SCHLAEFER, Lidong ZHAO, Nils KOPP, Arne SCHLEGEL

《机械工程前沿(英文)》 2010年 第5卷 第2期   页码 125-129 doi: 10.1007/s11465-010-0007-z

摘要: Reactive air brazing (RAB) is an emerging technology for the production of ceramic-to-ceramic and ceramic-to-metal joints. In this study, RAB was investigated with respect to the potential applications for solid oxide fuel cells (SOFCs) as one example of use. It was found that alumina could be well brazed by RAB with AgCu and AgCuTi brazes. Both braze composition and brazing temperature influenced significantly the wetting behavior and their mechanism of wetting. AgCu and AgCuTi braze alloys could also be used to produce brazed joints with the SOFC materials ceramic yttria stabilized zirconia and steel X1CrTiLa22. However, CuO reacts with the steel, forming a brittle oxide layer on the steel surface, which is undesirable for SOFC applications. The first trials with Ag0.5Al showed a promising solution.

关键词: reactive air brazing (RAB)     X1CrTiLa22     Al2O3     yttria stabilized zirconia (YSZ)     solid oxide fuel cell (SOFC)    

Cuprous oxide/copper oxide interpenetrated into ordered mesoporous cellulose-based carbon aerogels for

《化学科学与工程前沿(英文)》 2023年 第17卷 第7期   页码 918-929 doi: 10.1007/s11705-023-2305-0

摘要: The casual discharge of dyes from industrial settings has seriously polluted global water systems. Owing to the abundance of biomass resources, preparing photocatalysts for photocatalytic degradation of dyes is significant; however, it still remains challenging. In this work, a cuprous oxide/copper oxide composite was interpenetrated onto carbon nanosheets of cellulose-based flexible carbon aerogels (Cu2O/CuO@CAx) via a simple freeze-drying-calcination method. The introduction of the carbon aerogel effectively prevents the aggregation of the cuprous oxide/copper oxide composite. In addition, Cu2O/CuO@CA0.2 has a larger specific surface area, stronger charge transfer capacity, and lower recombination rate of photogenerated carriers than copper oxide. Moreover, Cu2O/CuO@CA0.2 exhibited high photocatalytic activity in decomposing methylene blue, with a degradation rate reaching up to 99.09% in 60 min. The active oxidation species in the photocatalytic degradation process were systematically investigated by electron spin resonance characterization and poisoning experiments, among which singlet oxygen played a major role. In conclusion, this work provides an effective method for preparing photocatalysts using biomass resources in combination with different metal oxides. It also promotes the development of photocatalytic degradation of dyes.

关键词: carbon aerogel     photocatalysis     dye degradation     biomass     cuprous oxide/copper oxide    

Mechanical properties and microstructure of multilayer graphene oxide cement mortar

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 1058-1070 doi: 10.1007/s11709-021-0747-3

摘要: This study reports on the effects of multilayer graphene oxide (MGO) on compressive strength, flexural strength, and microstructure of cement mortar. The cement mortar was prepared with type P. II. 52.5 Portland cement, standard sand, and MGO. Four mixes were prepared with inclusion of MGO (0%, 0.02%, 0.04%, and 0.06% by weight of cement). The testing result shows that the compressive of GO-cement mortar increased by 4.84%–13.42%, and the flexural strength increased by 4.37%–8.28% at 3 d. GO-cement mortar’s compressive strength and flexural strength at 7 d increased by 3.84%–12.08% and 2.54%–13.43%, respectively. MGO made little contribution to the increases of compressive strength and flexural strength of cement mortar at 28 d. The results of X-ray diffraction (XRD), scanning electron microscope (SEM), and nitrogen (N2) adsorption/desorption tests show that the types of hydration products and crystal grain size did not change after adding MGO. Still, it can help to improve the microstructure of the cement mortar via regulating hydration products and can provide more condensed cores to accelerate hydration. Furthermore, the regulating action of MGO for the microstructure of cement mortar at an early age was better than that at 28 d.

关键词: graphene oxide     cement     mortar     mechanical properties     microstructure    

标题 作者 时间 类型 操作

Translocation and biotoxicity of metal (oxide) nanoparticles in the wetland-plant system

期刊论文

Influence of surface modified mixed metal oxide nanoparticles on the electrochemical and mechanical properties

期刊论文

Recent advances in gold-metal oxide core-shell nanoparticles: Synthesis, characterization, and their

Michelle Lukosi,Huiyuan Zhu,Sheng Dai

期刊论文

Nexus between polymer support and metal oxide nanoparticles in hybrid nanosorbent materials (HNMs) for

Ryan C. SMITH,Jinze LI,Surapol PADUNGTHON,Arup K. SENGUPTA

期刊论文

Preparation of rare-earth metal complex oxide catalysts for catalytic wet air oxidation

LI Ning, LI Guangming, YAO Zhenya, ZHAO Jianfu

期刊论文

Removal and recovery of toxic nanosized Cerium Oxide using eco-friendly Iron Oxide Nanoparticles

Kanha Gupta, Nitin Khandelwal, Gopala Krishna Darbha

期刊论文

Crystalline mesoporous transition metal oxides: hard-templating synthesis and application in environmental

Zhen MA, Bei ZHOU, Yu REN

期刊论文

Application of metal oxides-based nanofluids in PV/T systems: a review

期刊论文

Fischer-Tropsch synthesis by reduced graphene oxide nanosheets supported cobalt catalysts: Role of supportand metal nanoparticle size on catalyst activity and products selectivity

Hasan Oliaei Torshizi, Ali Nakhaei Pour, Ali Mohammadi, Yahya Zamani, Seyed Mehdi Kamali Shahri

期刊论文

Signal promoting role of a p-type transition metal dichalcogenide used for the detection of ultra-trace

Abdolhamid Hatefi-Mehrjardi, Amirkhosro Beheshti-Marnani, Zarrin Es'haghi

期刊论文

Micro-sized hydrothermal carbon supporting metal oxide nanoparticles as efficient catalyst for mono-dehydration

Cheng PAN, Chao FAN, Wanqin WANG, Teng LONG, Benhua HUANG, Donghua ZHANG, Peigen SU, Aqun ZHENG, Yang SUN

期刊论文

金属支撑型固体氧化物燃料电池研究进展

周永川,宋世栋,韩敏芳

期刊论文

Brazing of ceramic-to-ceramic and ceramic-to-metal joints in air

Kirsten BOBZIN, Thomas SCHLAEFER, Lidong ZHAO, Nils KOPP, Arne SCHLEGEL

期刊论文

Cuprous oxide/copper oxide interpenetrated into ordered mesoporous cellulose-based carbon aerogels for

期刊论文

Mechanical properties and microstructure of multilayer graphene oxide cement mortar

期刊论文